What is Radioactivity ?
Radioactivity is the process whereby unstable atomic nuclei release energetic subatomic particles. The word radioactivity is also used to refer to the subatomic particles themselves. This phenomenon is observed in the heavy elements, like uranium, and unstable isotopes, like carbon-14.
Radioactivity was first discovered in 1896 by the French scientist Henri Becquerel, after which the SI unit for radiation, the Becquerel, is named. Becquerel discovered that uranium salts were able to blacken a photographic plate placed in the dark, even through a paper barrier. Subsequent experiments distinguished three distinct types of radiation -- alpha particles, beta particles, and gamma rays. These are positively charged, negatively charged, and neutral, respectively. In the United States, human exposure to radioactivity is measured in rads, where one rad represents 0.01 joule of energy absorbed per kilogram of tissue.
Radioactivity was first discovered in 1896 by the French scientist Henri Becquerel, after which the SI unit for radiation, the Becquerel, is named. Becquerel discovered that uranium salts were able to blacken a photographic plate placed in the dark, even through a paper barrier. Subsequent experiments distinguished three distinct types of radiation -- alpha particles, beta particles, and gamma rays. These are positively charged, negatively charged, and neutral, respectively. In the United States, human exposure to radioactivity is measured in rads, where one rad represents 0.01 joule of energy absorbed per kilogram of tissue.
Radioactivity processh
Types of decay
As for types of radioactive radiation, it was found that an electric or magnetic field could split such emissions into three types of beams. For lack of better terms, the rays were given the alphabetic names alpha, beta and gamma, still in use today. While alpha decay was seen only in heavier elements (atomic number 52, tellurium, and greater), the other two types of decay were seen in all of the elements.
In analyzing the nature of the decay products, it was obvious from the direction of electromagnetic forces that alpha rays carried a positive charge, beta rays carried a negative charge, and gamma rays were neutral. From the magnitude of deflection, it was clear that alpha particles were much more massive than beta particles. Passing alpha particles through a very thin glass window and trapping them in a discharge tube allowed researchers to study the emission spectrum of the resulting gas, and ultimately prove that alpha particles are helium nuclei. Other experiments showed the similarity between beta radiation and cathode rays; they are both streams of electrons, and between gamma radiation and X-rays, which are both high energy electromagnetic radiation.
Although alpha, beta, and gamma are most common, other types of decay were eventually discovered. Shortly after discovery of the neutron in 1932, it was discovered by Enrico Fermi that certain rare decay reactions yield neutrons as a decay particle. Isolated proton emission was eventually observed in some elements. Shortly after the discovery of the positron in cosmic ray products, it was realized that the same process that operates in classical beta decay can also produce positrons (positron emission), analogously to negative electrons. Each of the two types of beta decay acts to move a nucleus toward a ratio of neutrons and protons which has the least energy for the combination. Finally, in a phenomenon called cluster decay, specific combinations of neutrons and protons other than alpha particles were spontaneously emitted from atoms on occasion.
Still other types of radioactive decay were found which emit previously seen particles, but by different mechanisms. An example is internal conversion, which results in electron and sometimes high energy photon emission, even though it involves neither beta nor gamma decay.http://en.wikipedia.org/wiki/Radioactive_decay#Types_of_decay
IS IT HELPFUL OR HARMFUL
BENEFICIAL OR DESTRUCTIVE?
GOOD OR EVIL ???
In the life process Radioactivity can be used in life sciences as a radiolabel to visualise components or target molecules in a biological system. Some radionuclei are synthesised in particle accelerators and have short half-lives, giving them high maximum theoretical specific activities. This lowers the detection time compared to radionuclei with longer half-lives, such as carbon-14. In some applications they have been substituted by fluorescent dyes. Since we defined all the advantage of this things
in short some are useful for the study for beneficial use for future use specifically in the field of physics although there are still conditions that may affect mankind in utilizing this study specifically the health of the human in terms of long term diseases or worse incurable types.
Gamma Rays of health effects
All ionizing radiation causes similar damage at a cellular level, but because rays of alpha particles and beta particles are relatively non-penetrating, external exposure to them causes only localized damage, e.g. radiation burns to the skin. Gamma rays and neutrons are more penetrating, causing diffuse damage throughout the body (e.g. radiation sickness, increased incidence of cancer) rather than burns. External radiation exposure should also be distinguished from internal exposure, due to ingested or inhaled radioactive substances, which, depending on the substance's chemical nature, can produce both diffuse and localized internal damage. The most biological damaging forms of gamma radiation occur in the gamma ray window, between 3 and 10 MeV, with higher energy gamma rays being less harmful because the body is relatively transparent to them. See cobalt-60.
AND THE WORST PART IS ANNHILATION . . .
Annihilation is defined as "total destruction" or "complete obliteration" of an object;[1] having its root in the Latin nihil (nothing). A literal translation is "to make into nothing".
In physics, the word is used to denote the process that occurs when a subatomic particle collides with its respective antiparticle.[2] Since energy and momentum must be conserved, the particles are not actually made into nothing, but rather into new particles. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of the original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as conservation of energy and conservation of momentum are obeyed.
During a low-energy annihilation, photon production is favored, since these particles have no mass. However, high-energy particle colliders produce annihilations where a wide variety of exotic heavy particles are created.
No comments:
Post a Comment